

NOT FOR SALE!!!

1. Solve for x in each of the following Quadratic equations:

(a)
$$15x^2 - 8 = 14x$$

(b)
$$(x+1)(x-3) = 5$$

(c)
$$\frac{x(x-5)}{6} - 1 = 0$$

(d)
$$x^2 - x = 0$$

(e)
$$x(x+3) - 1 = 0$$

(f)
$$2x^2 - 2x = 12$$

(g)
$$x^2 - x - 12 = 0$$

(h)
$$(x-3)^2 - 3x(x-2) = 0$$

(i)
$$\frac{1}{2}x^2 + 3x - 10 = 0$$

(j)
$$(x-5)(x+3) = 0$$

(k)
$$x(x-7) = 0$$

(I)
$$x^2 - 5x + 6 = 0$$

$$(m)4x^2 - 5x = 3$$

(n)
$$x^2 + 9x - 3 = 0$$
 (Correct to TWO decimal places)

(o)
$$x^2 - 5x - 2 = 0$$
 (Correct to TWO decimal places)

(p)
$$x^2 - 6x + 2 = 0$$
 (Correct to TWO decimal places)

(q)
$$2x^2 - 5x + 12 = 0$$

(r) If a quadratic is in the form $ax^2 + bx + c = 0$, prove by completing the square

that the roots can be found in the form : $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$.

MS Tutors
Build | Grow | Inspire
061 423 6803
www.mstutors.co.za

(s) $x^2 - 7 = 0$ as a difference of two squares.

2. Inequality equations

(a)
$$x^2 + 8x + 16 > 0$$

(b)
$$x(x-4) < 0$$

(c)
$$x(4-x) < 0$$

(d)
$$(3-x)(x+1) > 0$$

(e)
$$x^2 \ge 20 + x$$

(f)
$$3(x+7) < \frac{x}{2} + 1$$

(g) Given $f(x) = \frac{2x^2 - x}{5}$ Determine the values of x for which $f(x) \ge 0$

$$(h) \frac{x^2}{x+2} \le 0$$

3. Exponential equations

Solve for x in each of the following:

(a)
$$5^x = \frac{1}{125}$$

(b)
$$3^{x+3} - 3^{x+2} = 486$$

(c)
$$4^x - 2^x = 2$$

(d)
$$x^{-\frac{3}{4}} = 8$$

(e)
$$2^{3x+1} + 2^x = 12$$

(f)
$$2^{x\sqrt{x}} = 2^{27}$$

(g)
$$3^{2x} - 7.3^x = 18$$

(h)
$$x - 3x^{\frac{1}{2}} = 4$$

(i)
$$3x^3 = 81$$

MS Tutors Build | Grow | Inspire 061 423 6803 www.mstutors.co.za

Expressions and Equations with Surds

1. Solve for x in each of the following:

(a)
$$\sqrt{2x+1} = x-1$$

(b)
$$\sqrt{\frac{x}{2} + 3} = 4 - x$$

(c)
$$\sqrt{x-1} + 3 = x$$

(d)
$$\sqrt{x^2 - 5} = 2\sqrt{x}$$

(e)
$$9 = \sqrt{x}$$

2. Simplify the following, without the use of a calculator:

(a) Show that
$$\sqrt[12]{10} \times \sqrt[6]{640} \times \sqrt[4]{810} \times \sqrt{40} = 120$$

(b)
$$\sqrt{72x^2} - \sqrt{98x^2} + 2\sqrt{288x^2}$$

(c)
$$\sqrt{x + \sqrt{2x - 1}} \cdot \sqrt{x - \sqrt{2x - 1}}$$

(d) if
$$x = \frac{3-\sqrt{a}}{\sqrt{2}}$$
 and $y = \frac{4+\sqrt{a}}{\sqrt{2}}$ Determine the value of $(x+y)^2$

(e) Show that
$$\frac{9-\sqrt{54}}{6\sqrt{2}} = \frac{3\sqrt{2}-2\sqrt{3}}{4}$$

Solving simultaneous equations

1. Solve for x and y simultaneously:

(a)
$$4x^2 - y^2 = 171$$
 and $2x - y = 9$

(b)
$$x^2 - xy + 3y^2 = 15$$
 and $y + 7 = 2x$

(c)
$$x^2 - 3x - 4 - y = y^2$$
 and $2x - y + 1 = 0$

(d)
$$x - 2y = -3$$
 and $xy = 20$

(e)
$$2^{3x+1} = 4^y$$
 and $x^2 + 2y = 29$

(f)
$$x = 2y$$
 and $x^2 - 5xy = -24$

(g)
$$(2x - y)^2 + (x - 3)^2$$

(h)
$$y = \frac{5}{x-2}$$
 and $y + 1 = 2x$

(i)
$$y = \frac{2x+2}{4}$$
 and $y - 2x^2 + 3x + 5 = 2x - 2x$

(j)
$$xy = 12$$
 and $7 = x + y$

(k)
$$6 - 4x - y = 0$$
 and $12 - 2x^2 - y = 0$

(I)
$$1 - x + y = 0$$
 and $y = 6 - 5x + x^2$

Nature of roots

MS Tutors Build | Grow | Inspire 061 423 6803 www.mstutors.co.za

- 1. For which value of k will the roots of $6x^2 + 6 = 4kx$ be real and equal.
- 2. Show that the roots of $(x + h)(x + k) = 4d^2$ are real for all values of h, k and d.
- 3. Show that $k^2x^2 + 2 = kx x^2$ has non-real roots for all real values of k.
- 4. The equation $x^2 + 12x = 3kx^2 + 2$ has real roots.
 - (a) Find the greatest value of k such that $k \in \mathbb{Z}$.
 - (b) Find the rational value of k for which the above equation has rational roots.
- 5. Consider the equation $k = \frac{x^2 4}{2x 5}$ where $x \neq \frac{5}{2}$
 - (a) Find the value of k for which the roots are equal.
 - (b) Find an integer k for which the roots of the equation will be rational or unequal.
- 6. (a) Prove that the roots of the equation $x^2 (a+b)x + ab p^2 = 0$ are real for all values of a, b and p.
 - (b) When will the roots of the equation be equal?